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Abstract

The ability to learn is a potentially compelling and important qual-
ity for interactive synthetic characters. To that end, we describe
a practical approach to real-time learning for synthetic characters.
Our implementation is grounded in the techniques of reinforcement
learning and informed by insights from animal training. It simpli-
fies the learning task for characters by (a) enabling them to take ad-
vantage of predictable regularities in their world, (b) allowing them
to make maximal use of any supervisory signals, and (c) making
them easy to train by humans.

We built an autonomous animated dog that can be trained with
a technique used to train real dogs called “clicker training”. Ca-
pabilities demonstrated include being trained to recognize and use
acoustic patterns as cues for actions, as well as to synthesize new
actions from novel paths through its motion space.

A key contribution of this paper is to demonstrate that by ad-
dressing the three problems of state, action, and state-action space
discovery at the same time, the solution for each becomes easier. Fi-
nally, we articulate heuristics and design principles that make learn-
ing practical for synthetic characters.

CR Categories: 1.2.6 [Artificial Intelligence]: Learning—
Concept Learning; 1.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods and Search— Heuristic Methods; 1.3.6 [Computer
Graphics]: Methodology and Techniques — Interaction Techniques

Keywords: behavioral animation, animation, computer games

1 Introduction

We believe that interactive synthetic characters must learn from ex-
perience if they are to be compelling over extended periods of time.
Furthermore, they must adapt in ways that are immediately under-
standable, important and ultimately meaningful to the people inter-
acting with them. Nature provides an excellent example of systems
that do just this: pets such as dogs.

Remarkably, dogs do this with minimal insight into our behav-
ior, and little understanding of words and gestures beyond their
use as cues. In addition, dogs are only able to learn causality if
the events, actions and consequences are proximate in space and
time, and as long as the consequences are motivationally signifi-
cant. Nonetheless, the learning dogs do allow them to behave com-
monsensically and ultimately exploit the highly adaptive niche of
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“man’s best friend.” Our belief is that by embedding the kind of
learning of which dogs are capable into synthetic characters, we
can provide them with an equally robust mechanism for adapting in
meaningful ways to the people with whom they are interacting.

In this paper, we describe a practical approach to real-time learn-
ing for synthetic characters that allows them to learn the kinds of
things that dogs seem to learn so easily. We ground our work in the
traditional techniques of reinforcement learning, in which a crea-
ture learns to maximize reward in the absence of a teacher. Addi-
tionally, our approach is informed by insights from animal training,
where a teacher is available. Animals and their trainers act as a
coupled system to guide the animal’s exploration of its state, ac-
tion, and state-action spaces (see Section 3.2). Therefore, we can
simplify the learning task for autonomous animated characters by
(a) enabling them to take advantage of predictable regularities in
their world, (b) allowing them to make maximal use of any super-
visory signals, either explicit or implicit, that the world offers, and
(c) making them easy to train by humans.

Figure 1: Terence is an autonomous animated pup that can be
trained using clicker training. The trainer’s interface is a micro-
phone and pair of virtual hands controlled by a gamepad. The left
hand holds a clicker that makes a sound when pressed. The right
hand serves as a target for luring, and can also give extra reward by
scratching the dog’s head.

Using this system, we implemented the autonomous animated
dog shown in Figure 1 that can be trained with a technique used to
train real dogs. The synthetic dog thus mimics some of a real dog’s
ability to learn including:

¢ The best action to perform in a given context.

What form of a given action is most reliable in producing re-
ward.

The relative reliability of its actions in producing a reward and
altering its choice of action accordingly.



e To recognize new and valuable contexts such as acoustic pat-
terns.

e To synthesize new actions by being “lured” into novel config-
urations or trajectories by the trainer.

In order to accomplish these learning tasks, the system must address
the three important problems of state, action and state-action space
discovery. A key contribution of this paper is to show how these
processes may be addressed in an integrated approach that guides
and simplifies the individual processes.

We emphasize that our behavioral architecture is one in which
learning can occur, rather than an architecture that solely performs
learning. As we will see, learning has important implications for
many aspects of a general behavior architecture, from the design
of the perceptual mechanism to the design of the motor system.
Conversely, careful attention to the design of these components can
dramatically facilitate the learning process. Hence, an important
goal of this paper is to highlight some of these key design consider-
ations and to provide useful insights apart from the specifics of the
approach that we have taken.

We begin by surveying related work and putting our work in per-
spective. We then turn to a discussion of reinforcement learning.
We introduce the core concepts and terminology, discuss why a
naive application of reinforcement learning to synthetic characters
is problematic, and finally draw on insights from animal training
on how animals conceptually address the same issues. We then
describe our approach, reviewing our key representations and pro-
cesses for state, action and state-action space discovery. We present
our experience with Terence, our virtual pup, and discuss limita-
tions of our approach. We conclude with a summary of what we
see as the key lessons from our work.

2 Related Work

The approach described below is in the general category of rein-
forcement learning. (See [Kaelbling 1990; Ballard 1997; Mitchell
1997; Sutton and Barto 1998] for good introductions to the field.)
The incremental exploration of state-action space proposed below
is similar to an approach originally suggested by Drescher [1991].
What is new in our work is an integrated approach to state, action
and state-action space discovery within the context of reinforce-
ment learning and an articulation of heuristics and design principles
that make learning practical for synthetic characters.

Our approach is also informed by a close study of animal train-
ing and what it seems to imply about how animals learn. For good
introductions to animal learning, see [Lorenz and Leyahusen 1973;
Lorenz 1981; Shettleworth 1998; Gould and Gould 1999; Gallistel
and Gibbon 2000; Lindsay 2000; Coppinger and Coppinger 2001];
for an introduction to the field of animal training see [Ramirez
1999]; and for an introduction to the specific approach to training
that we take as our inspiration, i.e., “clicker training”, see [Wilkes
1995; Pryor 1999; Ramirez 1999]. Clicker training has been suc-
cessfully adapted by researchers at SONY CSL to train their robotic
dog AIBO [Kaplan et al. 2001]. See [ Yoon et al. 2000a] for an early
application of clicker training to training animated characters. What
is novel in our research is a computational model that not only uses
animal training as a starting point, but places learning within the
larger behavioral context.

In an effort to reduce the work required by animators, learning
has been applied to the problem of generating motion primitives.
(See [van de Panne and Fiume. 1993; van de Panne et al. 1994;
Grzeszczuk and Terzopoulos 1995; Grzeszczuk et al. 1998; Hod-
gins and Pollard 1997; Gleicher 1998].) Most recently, [Falout-
sos et al. 2001] have done exciting work showing how a statistical
learning technique (SVM) can be used to learn the “pre-conditions”
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from which a given “specialist controller” can succeed at its task,
thus allowing them to be combined into a general purpose motor
system for physically based animated characters.

The approaches to motor learning described above focus on
learning “how to move” subject to some criteria such as energy min-
imization, whereas the motor learning that is described in this paper
focuses on learning the “value with respect to a motivational goal of
moving in a certain way”. As such, our approach represents a layer
above many of these prior approaches. Finally we note our empha-
sis is on learning as an online capability to enhance interaction with
a human participant rather than as a design tool.

A number of noteworthy architectures for control of animated
autonomous characters have been proposed [Reynolds 1987; Tu
and Terzopoulos 1994; Blumberg and Gaylean 1995; Perlin and
Goldberg 1996; Funge et al. 1999; Burke et al. 2001]. While pro-
ducing impressive results, most of these systems have not incorpo-
rated behavioral learning and thus cannot modify the pre-specified
behavior on the basis of experience. Our contribution is to integrate
learning into a general-purpose behavior architecture.

Higher-level behavioral learning has only begun to be explored
in computer graphics. (For examples, see [ Yoon et al. 2000b; Burke
et al. 2001; Tomlinson and Blumberg 2002].) Several of the current
generations of digital pets such as Dogz [Resner et al. 1997], Crea-
tures [Grand et al. 1996] and AIBO also incorporate simple learn-
ing. This is done particularly well in Dogz, to the point that many
people are convinced that more learning is going on than is actually
the case. Factors contributing to this assumption include: imme-
diate emotional responses by the creature to good or bad conse-
quences, intuitive means for delivering reward or punishment, and
an immediate and noticeable change in behavior in response. The
popular video game Black and White [Evans 2002] centrally fea-
tures a character that learns from a person’s actions. Our contribu-
tion is to provide insights into how state and action space discovery
can be integrated into the learning process.

3 Background on Learning and Training

The approach taken in our work is best understood as a variant of a
popular machine learning technique known as reinforcement learn-
ing. In this section we begin by introducing the key ideas and termi-
nology. We then look at the problem from the perspective of animal
training and highlight the key ideas from animal training that can
help make reinforcement learning practical for interactive synthetic
characters.

3.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is often used by autonomous systems
that must learn from experience. In reinforcement learning, the
world in which the creature lives is assumed to be in one of a set of
perceivable states. The goal of reinforcement learning is to learn an
optimal sequence of actions that will take the creature from an ar-
bitrary state to a goal state in which it receives a reward. The main
approach taken by reinforcement learning is to probabilistically ex-
plore states, actions and their outcomes to learn how to act in any
given situation. Before we describe how this is done, we need to
define state, action and reward a bit more formally.

State refers to a specific, hopefully useful, configuration of the
world as sensed by the creature’s entire sensory system. As such,
state can be thought of as a label that is assigned to a sensed con-
figuration. The space of all represented configurations of the world
is known as the state space.

Performing an action is how a creature can affect the state of
its world. Typically, the creature is assumed to have a finite set of
actions, from which it can perform exactly one at any given instant,



e.g., walk or eat. The set of all possible actions is referred to as the
action space.

A state-action pair, denoted as <.S/A>, is a relationship between
a state S and an action A. It is typically accompanied by some nu-
meric value, e.g., future expected reward, that indicates how much
benefit there is in taking the action A when the creature senses state
S. Based on this relationship a policy is built, which represents a
probability with which the creature selects an action given a spe-
cific state.

The creature receives reinforcement (or reward) when it reaches
a state in which it can satisfy a goal. For example, if a dog sits and
gets a treat for doing so, the reward or reinforcement is the resulting
decrease in hunger or pleasure in eating the treat.

Credit assignment is the process of updating the associated value
of a state-action pair to reflect its apparent utility for ultimately re-
ceiving reward.

While there are a number of variants of reinforcement learn-
ing, Q-Learning is a simple and popular representative that can be
used to illustrate some key concepts. In Q-Learning, introduced by
Watkins [Watkins and Dayan 1992], the state-action space is dis-
cretized if necessary and stored in a lookup table. In the table, each
row represents a state, and each column represents an action. An
entry in the table represents the “utility”, or Q-Value, of a given
state-action pair with respect to getting a reward. Watkins showed
that the optimal value for each state-action pair could be learned by
incrementally (and exhaustively) exploring the space of state-action
pairs and by using a local update rule to reflect the consequences of
taking a given action in a given state with respect to achieving the
goal state [Sutton 1991].

It is important to note that techniques such as Q-Learning that
focus on learning an optimal sequence of actions to get to a goal
state solve a much harder problem than either animals solve or that
we need to solve for synthetic characters. As we will see, animals
are biased to learn proximate causality. Even in the case of se-
quences, the noted ethologist Leyahusen suggests that the individ-
ual actions may be largely self-reinforcing, rather than being re-
inforced via back propagation [Lorenz and Leyahusen 1973]. In
addition, Nature places a premium on learning adequate solutions
quickly.

Reinforcement learning is an example of an unsupervised learn-
ing technique in that the only supervisory signal is the reward re-
ceived when it achieves a goal. On the other hand, it is clear that
a trainer could significantly expedite exploration of the respective
spaces by guiding the search. In the following section we discuss
how trainers and their animals cooperate to simplify the learning
task.

3.2 The Perspective of Animal Training

Here we describe a popular and easy technique for animal train-
ing called “clicker training” and what it seems to imply about how
animals learn.

Clicker training unfolds in three basic steps. The first step is to
create an association between the sound of a toy clicker and a food
reward. A dog conditioned to the clicker will expectantly look for
a treat upon hearing the click sound. Once the association between
clicks and treats is made, trainers use the click sound to “mark”
behaviors that they wish to encourage. By clicking when the dog
performs a desired behavior, and subsequently treating, the dog be-
gins to perform the behavior more frequently.

Animals appear to make an important simplifying assumption:
an action or stimulus that immediately precedes a motivationally
significant consequenceis “as good as causal.” Hence, clicker train-
ing is a particularly effective training technique because it makes
it easy to provide immediate feedback. Indeed, the sound of the
clicker marks the exact behavior that leads to the subsequent treat,
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as well as signaling that the action is complete. In addition, it acts
as a bridge between when the dog earned the reward and when it
actually receives it.

Since clicker training relies on the dog to produce some approx-
imation of a desired behavior before it can be rewarded (and pro-
ducing a high level of reinforcement keeps the dog interested in
the process), trainers utilize a variety of techniques to encourage
the dog to perform behaviors they might otherwise perform infre-
quently, or not at all. A useful and popular technique is to train the
dog to touch an object such as the trainer’s hand or a “target stick”.
By subsequently manipulating the position of the target, the trainer
can, in effect, lure the dog through a trajectory or into a pose as it
follows its nose. For example, by moving the target over the dog’s
head, a dog may be lured into sitting down. If lured and rewarded
repeatedly, the dog will begin to produce the action (e.g., sit) with-
out being lured. This suggests that the animal is associating reward
with its resulting body configuration or trajectory, and not for the
action of simply following its nose.

The dog is unlikely to perform the desired final form of the be-
havior immediately, especially if it is an unusual behavior, e.g.,
“dancing on the two rear feet”. As a result, the trainer will often
guide the dog toward the desired behavior by rewarding ever-closer
approximations in a process known as shaping.

The third and final step in clicker training is to add a discrimi-
native stimulus such as a gesture or vocal cue. Trainers typically
introduce the cue by presenting it as the animal is just beginning
to perform the action, and then subsequently rewarding the action.
Significantly, the animal has already decided what to do before the
trainer issues a cue but is still able to learn to associate the ac-
tion (and its subsequent reward) with a cue occurring in a temporal
window proximate to the action onset. Note, unlike other training
techniques, clicker trainers teach the action first, and then the cue.
The superiority of this decomposition suggests that animals make
associations more easily if they already “know” a particular action
is valuable.

3.3 Making Learning Practical for Synthetic Char-
acters

While reinforcement learning provides a theoretically sound basis
for building systems that learn, there are a number of issues that
make it problematic in the context of autonomous animated crea-
tures. Borrowing ideas from animal training, however, we can ad-
dress these problems in a way that makes real-time learning practi-
cal for synthetic characters.

Enable them to take advantage of predictable regularities in
their world.We saw that dogs use predictable regularities of how
the world works to simplify the learning task. For example, they
bias their choice of action toward those actions that have been suc-
cessful at receiving reward in the past. Similarly, they limit their at-
tention to stimuli or cues that occur in a temporal window around an
action’s onset in order to identify reliable contexts in which to per-
form the action. Through variations in how the action is performed
and by attending to correlations between the action’s reliability in
producing reward and the state of contemporaneous stimuli, they
are performing a local search in a potentially valuable neighbor-
hood.

This model of causality, while very simple, is nonetheless suffi-
cient to capture many aspects of how the world works. Perhaps as
important for synthetic characters, learning proximate causality is
exactly the kind of learning that is most apparent and easiest to un-
derstand for an observer. A final insight is that the state and action
spaces often contain a natural hierarchical organization that facili-
tates the search process.

Allow them to make maximal use of any supervisory signals,
either explicit or implicit, that the world offers. Biasing the



choice of behavior based on consequences is an example of making
use of explicit supervisory signals (such as getting a treat). The con-
sequences of the action can also be used as an implicit (secondary)
supervisory signal for guiding the exploration of the character’s
state and action spaces. This guidance is significant because syn-
thetic characters, by their very nature, have state and action spaces
that are both continuous and far too big to permit an exhaustive
search, even if discretized. For example, the a priori state space for
a character that must learn to respond to arbitrary verbal or gestural
cues, will be intractably huge since it will include the entire set of
possible acoustic and gestural patterns. Similarly, in the case of an
expressive character for whom the style of the action is as important
as the action itself, the action space will be the space of all possible
motions. Ironically though, most of the volume of these respec-
tive spaces is irrelevant from the character’s standpoint of getting
reward.

Our observation from animal training is that animals seem to
solve this problem by building models of important sensory cues
“on demand”, using rewarded actions as the context for identifying
important sensory cues and for guiding the perceptual model of the
cue. For example, a good example of the acoustic pattern “sit” is
the one that occurs just before or during a sit action that results in
reward.

This point suggests a computational strategy —discover, based
on experience, those patterns (in the case of state space) or motions
(in the case of action space) that do seem to matter and add them
dynamically to their respective spaces. These processes are known
as state space discovery and action space discovery respectively.
While there are established techniques for performing state-space
discovery (see, for example, [Ivanov 2001]) they often require a lot
of data. A key insight is that these processes can be guided by using
the context of a rewarded action to facilitate the classification pro-
cess. Indeed, by choosing the right representation, state and action
space discovery can be done using exactly the same mechanism.

Make them easy to train. For training to be a compelling ex-
perience for the human participant, the character needs to be easy
to train using observable behavior, without the trainer having any
visibility into the character’s internal state.

On the simplest level, the character must be sensitive to the im-
mediate consequences of its actions, attend to changes in stimuli
that occur right before and during its performance of an action, and
its observable behavior must change quickly in response. The abil-
ity to be trained via luring is especially important since otherwise
the trainer has to wait for the animal to randomly choose the action,
which could take forever.

Our discussion of animal training suggests that animals perform
the equivalent of credit assignment in a way that makes it easier to
train them than it might be otherwise. In the case of luring, they
generalize from being rewarded for “following their nose” to being
rewarded for their resulting configuration or trajectory. In the lan-
guage of reinforcement learning, it is as if during credit assignment
the “follow your nose” state-action pair lets another state-action
pair get the credit, namely the one associated with the configura-
tion or trajectory. Similarly, when associating a cue with an action,
animals act as if they form and assign credit to new state-action
pairs based on evidence acquired while performing an existing but
related state-action pair (i.e., one that shares the same action). The
computational implication of luring and cue association is that by
allowing the state-action pair that would normally get credit to dele-
gate its credit to another pair, the training process can be facilitated.

4 System Description

‘We now turn to a moderately detailed discussion of the representa-
tions and processes used in our system. While due to space we can-
not provide all the implementation details, we try to offer insights in

420

design choices. The system described below has been implemented
as part of a system that is similar to that described in [Burke et al.
2001; Isla et al. 2001].
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Key Representations
State

Many state spaces have a natural hierarchical organization, e.g., the
space of acoustic patterns, the space of utterances, and individual
utterances such as “sit”, “down” and “roll over”. By incorporating
a similar hierarchical representation of state space into our system,
we can “notice” that a given action is more reliable when a whole
class of states is active. This information provides evidence that
further exploration and refinement within a class of states might be
fruitful for increasing reliability of reward.

true
—
f/

utterance

“h(’.g"

Figure 2: In our work the state space is represented by a percept
tree. The percept tree maintains a hierarchical representation of
the sensory input where leaf nodes represent the highest degree of
specialization and the root node matches any sensory input. The
structure of the tree is sequentially discovered and refined with time
as indicated by its utility with respect to getting reward.

As illustrated in Figure 2, we use a hierarchical mechanism
called a percept tree to extract state information from the world.
Each node in the tree is called a percept, with more specific per-
cepts nearer to the leaves. Percepts are atomic perception units,
with arbitrarily complex logic, whose job it is to recognize and ex-
tract features from raw sensory data. For example, one percept may
recognize the presence of the utterance “sit” in an auditory stream,
and another might recognize the performance of a particular mo-
tor trajectory. Similarly, an “utterance” percept might recognize the
presence of “utterances” in an auditory field, and its children might
recognize the presence of specific utterances such as “sit”, “down”,
“roll-over”, etc. The root of the tree is the most general percept,
which we call “True” since it is always active.

Percepts are model-based recognizers, meaning that on each
simulation cycle they compare raw sensory data to an internal
model and become active if they match within some threshold. If a
percept is active, the sensory data is passed recursively to the per-
cept’s children for more specific classification. If not, all its chil-
dren can be pruned from the update cycle. This culling is impor-
tant since percept models can vary in complexity. For symbolic
data, the model is trivial: it is a string and the matching criterion
is simple string equality. In the case of an utterance percept, how-
ever, the model may be a collection of vectors of cepstral coeffi-
cients[Rabiner and Juang 1993] that represent the mean of a set
of previously learned examples [Ivanov 2001], and the compari-
son between sensory data and the model is more complex (section
4.2.3). Motion percepts use a model that represents a path through
the space of possible motions. Also associated with each percept is
a short-term memory mechanism that keeps track of its activation
history over some period of time.

In the language of RL, a percept represents a subset of the entire
state space. That is, it looks for a specific feature in the state space.
In RL, state refers to the entire sensed configuration of the world; a



percept is focused on only one aspect of that configuration. As we
will see, percept decomposition of state allows for a heuristic search
through potentially intractable state and state-action spaces. The
downside is that it makes learning conjunctions of features harder.

It is important to note that the percept tree is a dynamic structure
that is modified as a result of state space discovery as described in
Section 4.2.3.

4.1.2 Action

Actions refer to identifiable patterns of motion through time. They
are often conceptualized and implemented as discrete verbs, per-
haps parameterized with associated adverbs (see [Rose et al. 1999]).
While this approach has the desirable property that other parts of
the system can treat the action as a label, the representation is not
amenable to the type of action space discovery needed to support
luring. In contrast, if we consider a creature as having a pose space
that contains all of its possible body configurations, then an action
can be thought of as a specific path through pose space. Just as
a percept is a label for a class of observations, an action can be
thought of as a label associated with a path or class of paths in pose
space. For the purposes of learning, the analogy to state learning
is complete if one assumes the existence of a distance metric that
evaluates the similarity of two paths. This is the fundamental rep-
resentation of action used by our system.

Each creature in our system has a motor system with a represen-
tation of the creature’s pose space encoded in a structure called a
pose-graph. The nodes in the pose-graph represent annotated con-
figurations that are generated originally from source animation ma-
terial. A node includes a complete set of joint angles and veloci-
ties as well as a number of annotations including time and source-
labeling (i.e., what animation it came from and at what point within
the animation), connectivity information (e.g., the preceding and
following poses in the source animation), and over time, a distri-
bution of the likelihood of being in the current pose as a result of
all known actions. For example, a pose associated with a sitting
configuration might be the result of sitting or shaking a paw but is
unlikely to be associated with being told to jump.

The nodes of this graph are connected together in tangled di-
rected, weighted graphs. By associating a distance metric between
poses, paths taking the body from pose to pose can be efficiently
found and animations can be reformed in real-time by interpolat-
ing through nodes together again as needed. Details regarding the
actual metric may be found in [Downie 2000] but essentially it cap-
tures the intuition that transitioning between similar joint configura-
tions should be preferred over widely differing joint configurations,
and that transitions that require less acceleration should be favored
over those that require more. Because the pose-graph is derived
from “correct” examples, it implicitly captures, to some approx-
imation, many of the biological and physical constraints of how
the creature moves—at the very least we are always interpolating
within the convex hull of these “correct” examples.

In addition to the pose-graph, the motor system contains motor
programs that are capable of generating paths through pose-graphs
in response to requests from actions. These programs may be quite
simple (essentially no more than playing out a particular animation)
or more complex (for example, luring towards an object).

One branch of the percept tree is devoted to motor percepts that
recognize paths taken by the motor system through pose space.
That is, a given motor percept has a model of a path and the ca-
pability to compare a novel path to this model. As we will see in
section 4.2.4 this allows us to treat action space discovery using
almost the identical mechanism as used in state space discovery.

The key points about action are that (a) our underlying represen-
tation of action is that of a path through a space of body configu-
rations, (b) we can calculate a distance metric between paths that
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reflects the similarity between two paths, (c) associated with each
path is a “label” and (d) the label is used to specify which path
through pose space the motor system should follow at any given
point in time.

4.1.3 State-Action

The representation of a particular state-action pair in our system
is called an action tuple. An action tuple is composed of five ele-
ments that specify: what to do, when, to what, for how long, and
why. However, one can think of an action tuple as an augmented
state-action pair in which the state information is provided by an
associated percept (when), and the action (what) is the label for a
given path through pose space. Action tuples are organized into
groups and compete probabilistically for activation based on their
value and applicability (i.e., if their associated percept is active). In
the discussion below, we will use action tuple and percept-action
pair interchangeably. !

Each action tuple keeps reliability and novelty statistics for its
associated percept and the percept’s children. Reliability models
the correlation between an action tuple being rewarded and a per-
cept being active (in an overlapping temporal window). The novelty
statistic reflects the relative frequency of the event of the percept
being active; a novel percept is one has been rarely active. These
statistics are used by the system to guide the exploration of poten-
tially useful states by identifying more specific percepts that seem
correlated with an increased reliability of the action in producing
reward.

Mirroring our hierarchical representation of state, action tuples
that invoke the same action but that depend on different percepts are
organized hierarchically according to the specificity of the percept.
When a transition between active actions occurs, we perform credit
assignment and the outgoing action chooses its “best” action tuple
to receive credit. For this approach to work, we need a metric to
determine the “best” candidate for credit assignment. This need not
be the percept-action pair that actually performed the action. In-
stead, we find the percept-action pair with the same action, but with
a percept that was not only active, but also the most reliable, novel
and specific. We search for this pair within a temporal window
overlapping with the action performed by some specified amount.
This is illustrated in Figure 3. Similarly, during action selection,
each action gets to choose its “best” action tuple to compete with
the “best” action tuples associated with other actions.

“sit utterance” “click”
perceived perceived
l >
T >
<true/sit> <true/sit>
begins ends

<”sit-utterance”/sit>
gets the credit

Figure 3: In this example, the <*“true”/sit>> action tuple delegates
credit to < “‘sit-utterance’’/sit> since the “sit-utterance” percept be-
came active during the attention window (gray bar) associated with
<“true”/sit> and is a more novel and reliable predictor of reward
than “true”. By allowing the credit assignment phase to choose who
gets credit we can dramatically simplify the learning and training
process, as we will see in the section on action space discovery.

'We use percept-action pair rather than state-action pair to remind the
reader that an action tuple makes its “when decision” based on a subset of
the entire state of the world as indicated by its “when” percept.



4.1.4 Reward

An action tuple may have good, indifferent or bad consequences.
Consequences are expressed on an absolute scale, and certain
events are labeled a priori as being “good” or “bad”.

4.2 Key Processes

4.2.1 Credit Assignment

Our approach to credit assignment varies from the traditional RL
approach in a number of ways:

o Delegate credit assignment. The action tuple that is deacti-
vating and normally the candidate for credit assignment has
the option to delegate credit assignment to another action tu-
ple. This is perhaps the most significant difference and plays
an important role in our algorithm.

Selective propagation of value. The key implication of the
bias to learn immediate consequences is that we do not prop-
agate value unless a good or bad consequence is observed, or
unless the novelty of the percept associated with the succeed-
ing action tuple is above a threshold. The intuition is that the
percept-action pair should only get credit if it produced re-
ward or if it seems causal in making a novel percept active,
thereby allowing another potentially more valuable percept-
action pair to become active.

A rate-based model. In traditional RL, the scalar value of a
state-action pair tends towards the average value of perform-
ing that action in that state. An action tuple, on the other hand,
explicitly learns a model of its rate of producing reward; ulti-
mately, its value is a function of this learned rate and the value
assigned to the consequences. During credit assignment, an
action tuple updates a model of its rate of producing reward
based on consequence.

Non-stationary estimate. The rate of producing a significant
consequence is estimated over the most recent NV trials, where
N is typically a small number. Should the world change, a
creature can rapidly update its rate estimates and adapt to the
changes. Trials are measured in the number of activations of
the action tuple that led to a reward. Hence, they are variable
in length, reflecting the pattern of rewards.

The most important reason for using a rate-based model is that by
maintaining an explicit model of rate, the action tuple is able to
inform the rest of the system whether a consequence is consistent
with its model or not, and hence expected or unexpected. For ex-
ample, this information can be used by a proto-emotion system to
decide whether the creature should show surprise or not, and if so,
whether the surprise should be positive or negative.

4.2.2 State-Action Space Discovery

State-action space discovery is the process of discovering the best
percept-action pair to perform in any given state. In our earlier
discussion of RL, we saw that the set of state-action pairs is typi-
cally specified a priori and the task for the learning algorithm is to
exhaustively explore the space and learn the appropriate value for
each pair. Our hierarchical representation of state allows us to adopt
a different approach—the system is initially populated with only a
few percept-action pairs (i.e., action tuples) that represent general
world states (i.e., reference percepts at the top of the percept tree).
Over time, new percept-action pairs are added as the system gath-
ers evidence that a promising action associated with a given state
might be made even more reliable if associated with a more spe-
cific child of the state. This process of creating new children action
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tuples is referred to as specialization. At the same time, of course,
the system must learn the appropriate value for the percept-action
pairs. The advantage of this approach is twofold. First, the sys-
tem only explores areas of the space for which there is evidence of
possible improvement. Second, fewer resources are required when
action tuples are not created a priori. In this section, we discuss
how specialization occurs.

< “true” /sit/60 >

“any-utterance”

b)

< “true”/sit/50 >

“any-utterance”

<“sit”/sit/120 >

Figure 4: This figure illustrates the process of state-action space
discovery. In (a) the trainer begins by rewarding the performance
of <*“true”/sit>>, with the effect being that the reliability and value
of <“true”/sit> increases. This in turn increases the frequency of
sitting. Once the dog is sitting frequently, the trainer starts saying
“sit” as the sit action is performed, while continuing to reward the
sit. As the trainer continues this process, the system begins to build
a classifier for the specific utterance that occurs during the atten-
tion window associated with rewarded sits, and eventually spawns a
< “sit-utterance”/sit>> percept-action pair (b). Over time the trainer
will stop rewarding spontaneous sits or sits in response to other ut-
terances (i.e., <“true”/sit> or < “any-utterance”/sit>). The effect
is that the reliability (and value) of these action tuples will drop in
comparison with that of <“sit-utterance”/sit> and these less spe-
cific and reliable action tuples are expressed less frequently.

During the credit assignment phase, the percept-action pair se-
lected for credit assignment has the option of specializing. Two
conditions must be met to be eligible for specialization. First, the
value of the percept-action pair must be over some threshold. That
is, there needs to be some evidence that the percept-action pair or
a variant is potentially valuable. Second, the percept must have
a child whose reliability and novelty is above a certain threshold.
These statistics essentially provide evidence that a new percept-
action pair utilizing that child percept could be more reliable than
a percept-action pair relying on the parent percept. If these con-
ditions are met then a new child of the parent percept-action pair
is created with the same action as the parent, but with the percept’s
child. Once added to the parent, it becomes eligible to be selected as
the most appropriate representative of all of the percept-action pairs
that share its action. The process of specialization is illustrated in
Figure 4.

The mechanism described above provides a simple hierarchical
search of the state-action space, focusing on those areas that seem
most promising and exploring variants of percept-action pairs for
which there is evidence that a variant may prove more valuable than
its parent.



4.2.3 State Space Discovery

As suggested in Section 3.3, there are important advantages to in-
tegrating state space discovery into the learning process. For exam-
ple, assume a creature is to be taught to perform tricks in response
to arbitrary acoustic patterns (utterances, whistles, etc.) If state-
space discovery is being performed the only acoustic patterns that
need be considered are (a) those that are actually experienced and
(b) those for which there is some evidence that they matter with
respect to the creature’s goals.

An unsupervised technique such as k-means clustering can be
employed to partition the observed patterns into distinct clusters or
classes [Therrien 1989]. In this case, each cluster or class represents
a region of the state space. K-means clustering partitions observed
patterns into k clusters such that the distance between the center
of a cluster and all of the observations that comprise that cluster
is minimized across all clusters and patterns. This algorithm is an
example of unsupervised learning since the clusters emerge from
the data without any supervisory signal providing feedback.

Our experience with dog learning suggests a different approach:
treat all patterns that occur contemporaneously with an action that
directly leads to a significant outcome (i.e., a reward) as belong-
ing to the same cluster. The action itself becomes the label for the
cluster and the reward acts as a natural supervisory signal that indi-
cates if the pattern is a good example either of the cluster in which
it was classified (and so should be included in the cluster) or as a
seed for a new cluster. This idea is incorporated into the algorithm
used in our system, a variation on an incremental k-nearest neigh-
bors technique [Ivanov 2001]. For example, in the case of acoustic
processing, there is a percept that recognizes the presence of acous-
tic patterns, and each of its children percepts represent a cluster of
similar patterns. The child percepts are created dynamically as fol-
lows:

1. When an acoustic pattern is observed, the acoustic pattern per-
cept and its children responsible for classifying acoustic pat-
terns will attempt to find a match. If a match is found, the
associated percept becomes active.

If the percept becomes active, the active percept-action pair
may change if the percept is referenced by another existing
percept-action pair, and if that pair is more reliable in produc-
ing good consequences.

The pattern is stored in short-term memory.

The matching percept’s model of the pattern is subsequently
updated during credit assignment if:

(a) The deactivating percept-action pair is directly followed
by good consequences.

(b) The percept is a child of the deactivating percept-action
pair’s percept and it became active during the percept-

action pair’s attention window.

(c) The observation was not classified by one of the per-
cept’s children, but 4a) is true. In this case the percept
may create a new child and initialize the child’s model

with the observation as its first sample.

5. Update reliability statistics

For example, assume that initially the acoustic pattern percept
has no children, and there is a <“true”/sit> percept-action pair
(i.e., “sit”) that periodically becomes active. Now suppose that the
acoustic pattern percept repeatedly becomes active in the context of
a “sit” that consistently leads to a reward. The first time this occurs,
it will create a new child percept and initialize it with the pattern
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that activated it. Every subsequent time that a pattern is detected
in the context of a rewarded “sit”, that child percept will update
its model using the observed pattern. As the child starts classify-
ing incoming patterns correctly (according to its model) within the
context of a rewarded “sit”, its reliability will increase. Finally, as
a result of specialization (Section 4.2.2), when its reliability rises
above a threshold, a new percept-action pair will be created, i.e.,
<“sit”/sit>.

While simple, this algorithm captures what is necessary to learn
the kinds of acoustic cues that dogs seem capable of learning. In ad-
dition, Ivanov [Ivanov 2001; Ivanov et al. 2001] has explored these
ideas more formally and has shown how this simple idea can be in-
corporated into the well-known Expectation-Maximization learning
algorithm as well as SVM. (See [Ivanov et al. 2001] for a detailed
discussion of the algorithm used to perform clustering and classifi-
cation, as well as clustering with a reduced set of examples.)

4.2.4 Action Space Discovery

As suggested in Section 3.3, we can perform action space discovery
using almost the same approach as taken for state space discovery.
This simplification is made possible by our representation of action
(labeled paths through pose space) and by the existence of motor-
percepts that can classify a path just taken as being either an exam-
ple of an existing path or a novel path (Section 4.1.1). Since ac-
tion space discovery occurs as a result of luring and shaping, how-
ever, we need additional machinery. Specifically, luring requires
(a) a “follow-your-nose” motor program, (b) a “motor memory”
that continuously records recent poses that have been visited and
(c) the modification to the credit assignment rule as suggested in
Section 3.3. Even though “follow-your-nose” may directly precede
areward, the algorithm can give the credit to another action whose
associated path is close to that just taken. Using this idea, the algo-
rithm for performing action space discovery that supports luring is
straightforward. When assigning credit (at an action’s end):

1. If the creature received a direct reward, compare the path
taken to known paths:

(a) If the path is similar to an existing path, then reward the
action associated with that path (i.e., give it the credit)
and update the model of the rewarded path using the
path just taken as a new example.

(b) If the path is novel (not well captured by some other
action), then create a new motor percept and initialize

its model using the path just taken.

2. If no reward is received, ignore the path.

Once a motor-percept is added to the percept tree, reliability statis-
tics are kept just as in the case of other percepts. When a motor-
percept’s reliability gets above a threshold, a new action tuple is
created that uses the motor-percept’s path model as its action. Once
this is done, the action tuple is a candidate for specialization and
can explore to find the context in which it is maximally reliable.
Another kind of motor learning in animals that we have noted is
shaping. In our system we adopt a parameterized approach. That
is, if the action can be parameterized (e.g., the amplitude of “shake-
paw”) the parameters can be drawn from a local probability distri-
bution that reflects the pattern of rewards. When an action is about
to be performed, a value for the parameter is chosen probabilisti-
cally. If the action is subsequently rewarded, the probability distri-
bution is adjusted to make it more likely in the future that a value
near the chosen value will be selected. If the action is not rewarded,
the probability distribution is either left unchanged or adjusted to
make it less likely that a similar value will be chosen in the future.



5 Results and Discussion

The system described in Section 4 has been incorporated into a
general-purpose behavior architecture described elsewhere [Burke
et al. 2001; Isla et al. 2001]. In the accompanying video figure, we
demonstrate some aspects of clicker training and luring on our syn-
thetic pup, as discussed in Section 3 and illustrated in Figures 1 and
5.

Figure 5: On the left we see Terence performing a Beg. On the
right, an example of our action tuple visualizer.

Initially, the pup experiments among its known actions. As the
trainer preferentially rewards sitting, the frequency of sitting in-
creases. When sitting is performed reliably, the trainer starts giving
the verbal cue “sit” as the pup begins to sit, while also reducing the
rate of reinforcement if the pup sits in the absence of the cue. The
system, through state space discovery, creates a new percept that
contains a model of the (arbitrary) acoustic pattern associated with
the rewarded sit and adds it to the pup’s percept tree. Eventually,
a new percept-action pair is created that represents < “sit”/sit>. At
the same time, we see that the frequency of spontaneous sitting de-
creases.

Next, we demonstrate simple luring of the dog by moving the
target hand over the dog’s head and clicking as he gets into the sit
pose. We also illustrate the more complex example of luring the dog
through a novel trajectory —in this case, walking in an ‘S’ pattern
on the ground. When rewarded, this lured trajectory is added to the
action space as a new action (through action space discovery), and
can thus be associated with a cue and can be selected randomly by
the pup in the future just like any of the previously known actions.

Finally, we demonstrate shaping. The pup experiments with dif-
ferent forms of his parameterized “shake-paw” action. The trainer
rewards ever higher versions of the shake action until the pup shakes
his paw high reliably.

5.1

Our system has a number of important limitations and areas for
future work:

Limitations and Future Work

e The system is biased to learn immediate consequences rather
than extended sequences. Nonetheless, learning sequences is
important, and we will be addressing this area in our future
work.

e The system does not address spatial and social learning. Our
sense is that while much can be shared across learning tasks,
it is very likely that the right solution will have specialized
mechanisms and representations for specific learning tasks.
(See [Isla 2001] for an example of spatial learning.)

e There are things the system should be able to learn which it
cannot— for example, states that are conjunctions or disjunc-
tions of percepts. In addition, it cannot generalize from spe-
cific percepts to more general ones. These, however, are hard
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problems. An easier problem, and one that has been addressed
by a variant of the system discussed here, is to learn impor-
tant correlations among events that enable the creature to act
proactively[Burke 2001].

The existence, speed and quality of classifiers, such as our
utterance or path classifiers, are critically important to the
functioning of the system, but we have only touched on them
briefly here. While our integrated approach helps the classi-
fiers build better models, more could be done. For example,
the classifiers do not currently make use of negative examples.
(See [Ivanov 2001] for an in-depth discussion of this topic.)

How will the system scale? We feel that our integrated ap-
proach as well as our hierarchical representations of the learn-
ing spaces will allow our system to scale better than a tradi-
tional RL system, but more work needs to be done to support
this claim.

5.2 Useful Insights

While our results are from a specific learning system, there are a
number of ideas that we believe are generally useful in the context
of learning for synthetic characters, regardless of the specifics of
the implementation.

¢ Use temporal proximity to limit search. We utilize a tempo-
ral attention window that overlaps the beginning of an action
to identify potentially relevant states. Similarly, we generally
assign credit to the action that immediately precedes a moti-

vationally significant event.

Use hierarchical representations of state, action and state-
action space. We utilize loosely hierarchical representations
of state, action and state-action space and use simple statistics
to identify potentially promising areas of the respective spaces
for exploration. We grow these hierarchies downward toward
more fine-grained representations of state and more specific
(and hopefully more reliable) state-action pairs.

Use natural feedback signals to guide exploration of the
three spaces. The practical effect in both cases is that fewer
models are built, and those that are built tend to be more rele-
vant and robust.

Bias frequency and variability of action so as to facilitate
learning. This not only allows the creature to exploit what it
knows, but also gives it more opportunities to discover more
reliable variations.

Give credit where credit is due. The state-action pair that
would normally receive credit should be given the option to
delegate its credit to another, potentially more appropriate,
state-action pair. We saw that this was particularly useful in
the context of “luring”.

6

We described a practical approach to real-time learning for syn-
thetic characters that allows them to learn the same kinds of things
that dogs seem to learn so easily. We believe that by embedding
dog-level learning into synthetic characters, we can provide them
with a way to meaningfully adapt to human interaction.

By addressing the three problems of state, action, and state-
action space discovery at the same time, the solution for each be-
comes easier. Similarly, by viewing learning and training as a cou-
pled system we were able to gain valuable insights into each.

Conclusion
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